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Let A : n×n and χA(λ) be the characteristic polynomial of A, i.e. χA is constant multiple of det(λI−A),
a degree n polynomial.

Cayley-Hamilton Theorem Then χA(A) = 0. i.e. χA is an annihilator of A.

eλ =
∞∑
n=0

1

n!
λn

We define A0 := In×n,

eA
def
=

∞∑
n=0

1

n!
An,

eAt
def
=

∞∑
n=0

1

n!
Antn.

Take eλ as dividant, and χA as divisor, by division: eλ = r+ χA q for some remainder r(λ) and quotient
q(r) with deg(r) < n. Let r(λ) = β0 + β1λ + · · · + βn−1λ

n−1 for some βi. Suppose λi is a root of χA

of multiplicity m, then dj

dλj
eλ
∣∣∣
λ=λi

= eλi = dj

dλj
r(λ)

∣∣∣
λ=λi

for j < m since χA q has factor (λ − λi). By

Cayley-Hamilton Theorem, eAt = β0I + β1At+ · · ·+ βn−1A
n−1tn−1, instead of infinite sum.

1st order ODE 1st order ODE system

y′ + p(x)y = q(x) ẋ(t) = Ax(t) + f(t)

integrating factor I(x) = e
∫
p(x) dx integrating factor I(t) = e

∫
−Adt = e−At

solution y = I−1(k +

∫
I q dx) x = I−1(k +

∫
I f dt) = eAt(k +

∫
e−At f dt)

I would rather use differential operator D or Laplace transform L to solve 1st order systems than
applying the above formula because computing eAt is time-consuming, and we have to deal with the
multiple eigenvalue case sometimes .....

Instead of using operator D, Laplace transform L or the above formula to solve systems, we should
always remember a most common way, that is, finding all linearly independent homogeneous solutions
first.

Let x1, · · · ,xn be solutions of ẋ = Ax. If they are linearly independent, the Wronskian W (x1, · · · ,xn)
def
=

det(x1, · · · ,xn) 6= 0. Otherwise, W (x1, · · · ,xn) ≡ 0.

Fundamental Matrix and etA

Recall that any matrix X(t) satisfying det X(t) 6≡ 0 and Ẋ = AX is called a fundamental matrix for ẋ =
Ax. then arbitrary linear combination of columns of X is the general homogeneous solution xh = X k.
You may use method of undetermined coefficents to find a particular solution — let xp = X(t) C(t) for
some C, then non-homogeneous solution to ẋ = Ax+f is x = X k︸ ︷︷ ︸

xh

+ X
∫

X−1f dt︸ ︷︷ ︸
xp

= X(k+
∫

X−1f dt).

The one in text is just taking X(t) := etA as fundamental matrix, and so X−1 = (etA)−1 = e−tA. Notice
that directly computing etA is usually considered a brute force. A few skill you have learned in class:
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• If An×n is diagonalizable, i.e. ∃Pn×n such that A = PΛP−1, where Λ is a diagonal matrix with all
eigenvalues on diagonal and P = [v1 · · ·vn]: all eigenvectors of A in columns. Then etA = PetΛP−1,

etΛ =

 etλ1 0
. . .

0 etλn

 (taking fundamental matrix X(t) := PetΛ, then etA = XP−1).

• If a real A has eigenvalue λ = α+ iβ and eigenvector v, then Av = λv, i.e. λ = α− iβ is an eigen-

value and v is an eigenvector. Hence, An×n

[
Re v Im v

]
n×2

=
[
Re v Im v

]
n×2

[
Reλ Imλ
−Imλ Reλ

]
2×2

=[
Re v Im v

]
n×2

[
α β
−β α

]
2×2

. For instance, if n = 2, thenA =
[
Re v Im v

][ α β
−β α

][
Re v Im v

]−1

.

• If A is not diagonalizable, then ∃P such that A = PJP−1, where J consists of Jordan blocks
on diagonal and P consists of Jordan basis(general eigenvectors) of A in columns. Then etA =

PetJP−1, etJ =

 etB1 0
. . .

0 etBk

, Bi =

 λi
. . .

λi

+


0 1

... ...
... 1

0

 = λiI + S,

etBi = et(λiI+S) = etλietS = etλi



1 t
1!

t2

2!
· · · tm−1

(m−1)!

1 t
1!

. . .
...

. . . . . . t2

2!

0 . . . t
1!

1


.

Find linearly independent solutions by eigenvalues of A and their corresponding eigenvectors:

• If λ1, · · · , λn(may repeat) correspond linearly independent eigenvectors v1 · · ·vn , then x1 =
eλ1tv1, · · · ,xn = eλntvn are linearly independent solutions of ẋ = Ax.

• If
λ1 = α + βi
λ2 = α− βi , then their corresponding eigenvectors will be of the form

v1 = a + bi
v2 = a− bi

, and

eλ1tv1 = eαt(cos βt+ i sin βt)(a + bi) = eαt(cos βt a− sin βtb) + ieαt(sin βt a + cos βtb)
eλ2tv2 = eαt(cos βt− i sin βt)(a− bi) = eαt(cos βt a− sin βtb)− ieαt(sin βt a + cos βtb)

,

i.e. span of
eλ1tv1

eλ2tv2
is the same as span of

eαt(cos βt a− sin βtb)
eαt(sin βt a + cos βtb)

• If Av = λv, x1 = eλt v is a solution of ẋ = Ax. Let x2 = eλt(tv + w) be a solution independent
of x1, then w solves (A− λI)w = v.

• If λ is a root of χA of multiplicity m, but the dimension of its eigenspace (A−λI) := dim(ker(A−
λI)) = k < m, only k eigenvectors v1, · · · ,vk found, but at least we know k independent solutions
x1 = eλtv1, · · · ,xk = eλtvk. The rest (m− k) independent solutions are

xk+1 = eλt(tuk + uk+1),
...

xm = eλt( tm−k−1

(m−k−1)!
uk + · · ·+ t

1!
um−1 + um),
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where uk+1, · · · ,um are such that

uk ∈ ker(A− λI), i.e. uk = c1v1 + · · ·+ ckvk, and


(λI − A)uk+1 = uk,

...
(λI − A)um = um−1.

Note that c1, · · · , ck are not arbitrary.
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